Ivermectin and *Allium cepa* Protect against Cadmium-Induced Ovarian and Uterine Damage in Adult Wistar Rats

Babatunde Joseph Dare¹, Olawale Olaleye. Obembe², Dolapo Jeminat Azeez¹, Badmus Ismail Abiodun¹, Alabi Peter Dare³, Olabode John Fatoki⁴ Samson Opeyemi Adeleke¹

¹Department of Anatomy, Osun State University, Osogbo, Nigeria
²Department of Physiology Osun State University, Osogbo, Nigeria
³Department of Microbiology, Redeemers’ University, Ede, Nigeria
⁴Department of Biochemistry, Osun State University Osogbo, Nigeria

ABSTRACT

Background: Female reproductive organs are more susceptible to the risk of increased cadmium accumulation. Ivermectin is a known therapeutic drug in general medicine, while Allium cepa possesses antioxidant ability. This study investigated the effects of Ivermectin and *Allium cepa* on cadmium-induced ovarian and uterine damage in adult Wistar rats.

Methodology: Twenty-Eight adult female Wistar rats were randomly divided into six groups. Group (A); control group, Group (B); treated with 1.2 mg/kg b.w of Ivermectin, Group (C); treated with 1.2 mg/kg BW of Ivermectin and 2 mg/kg BW Cadmium respectively, Group (D); treated with 2 mg/kg BW Cadmium, Group (E); treated with 2 mg/kg BW Cadmium and 1.5 ml *Allium Cepa* respectively, and Group (F); treated with 1.5 ml Allium Cepa. The administration was done orogastrically and daily for four weeks. Animals were euthanized by cervical dislocation twenty-four hours after the last administration, Ovary and Uterus excised following abdominal incision, tissues for histological observation fixed in Bouins’ fluid for H&E stain, Masson trichrome, fuelgen stain, and toluidine blue stain respectively. Samples for enzymes assay were homogenized in 5% sucrose solution for lipid peroxidation using; MDA and the antioxidant enzymes using SOD and CAT.

Result: Cadmium treatment exerted oxidative stress, elevated the enzyme markers for oxidative damage in the ovary and uterus, and increased lipid peroxidation leading to cell membrane damage. Histological alterations, degeneration of ovarian follicles, and loss of endometrial lining characterized the animals exposed to cadmium. *Allium cepa* increased the antioxidant enzymes; SOD and CAT while lowering the MDA activities in Cadmium-induced oxidative stress. Histological integrity of the ovary and uterus was maintained; follicular development was evident at various stages, and the endometrial lining integrity was maintained.

Conclusion: This study demonstrated the protective role of *Allium cepa* and Ivermectin against cadmium toxicity on the reproductive organs in female adult Wistar rats.

Keywords: Cadmium, Ovary, Uterus, Ivermectin, *Allium cepa*, Fertility.
1. INTRODUCTION

Allium cepa contains sulfur-amino acid, vitamins and minerals, and varieties of secondary metabolites such as phytosterols, flavonoids, and saponins. [1,2,3] *Allium cepa* is highly valued for its therapeutic, antioxidant, antimicrobial, and anti-diabetic properties. [4,5] The bulb possessed antiseptic, anthelmintic, antispasmodic, anti-inflammatory, diuretic, carminative, expectorant, hypoglycaemic, febrifuge, lithotriptic, hypotensive, stomachic, and tonic properties [5]. *Allium cepa* (Onions) contain generous amounts of flavonoid quercetin that protect against cataracts, cardiovascular disease, and cancer [6,7]. Ivermectin is potently active against many of internal and external pathogens [8,9]. Ivermectin is effective against a wide range of parasites; gastrointestinal roundworms, lungworms, mites, lice, and horn flies [11-13]. Ivermectin proved to be a ‘Wonder drug’ in human health, improving nutrition, general health, and wellbeing [14,15]. The growth of various human cancers, such as ovarian cancer (OC), has been completely suppressed by Ivermectin due to its anti-parasitic nature [16-20].

Infertility is a global health issue growing as environmental pollution increases [21-23]. Cadmium (Cd) is a heavy metal known to be an endocrine disruptor [24] and a threat to human fertility health [25]. Diet and smoking are believed to be the primary sources of Cd in the general population [26]. Women are thought to be at greater risk of increased Cd accumulation [27,28] as Cd can accumulate in the ovary. An epidemiological survey reported that Cd in smokers is higher than in nonsmokers [29-31]. Cd directly affects the ovary and uterus, resulting in pathological changes, such as ovarian effusion, bleeding, and atrophies [32]. Cd increases apoptosis and causes cell damage by inducing oxidative stress [33-37].

Cadmium toxicity has been demonstrated in several organs [38-42]. Cd induces tissue injury by creating oxidative stress, [43,44] epigenetic changes in DNA expression, [45-48] and inhibition or upregulation of transport pathways [49,50]. Notably in the proximal S1 segment of the kidney tubule [51,52] inhibition of heme synthesis [53] and impairment of mitochondrial function potentially inducing apoptosis [54]. Depleting glutathione has been observed, as has structural distortion of proteins due to Cd binding to sulphydryl groups [55-57].

This study investigated the protective effects of Ivermectin and *Allium cepa* on the damaged ovary and uterus of Wistar rats exposed to Cd.

2. METHODOLOGY

2.1 Experimental Animals and Care

Twenty-Eight adult female Wistar rats (143.79-188.29 kg) were used. All animals were obtained and maintained under constant room temperature and humidity (50%), with natural light and dark cycles in the animal facility. The procedures used in this study were approved by the Health Research Institute Ethics Committee (HREC), Osun state university, Nigeria. All animals were given free access to feeding and water provided ad libitum. The animals were acclimatized two weeks before the start of the experiments.

2.2 Ethical Approval

All experimental procedures were performed by the regulations stipulated by the Health Research Ethics Committee College of Health Sciences, Osun State University, Osogbo, Nigeria) complying with the National Institute of Health guide guidelines for the care and use of Laboratory Animals. The study was conducted in the animal testing unit of the Osun State University, Nigeria.

2.3 Administration

Twenty-Eight adult female Wistar rats were randomly divided into six groups. Group A; control group, Group B; treated with 1.2 mg/kg of Ivermectin, Group C; treated with 1.2 mg/kg BW of Ivermectin and 2 mg/kg b.w Cadmium respectively, Group D; treated with 2 mg/kg b.w Cadmium, Group E treated with 2 mg/kg b.w Cadmium and 1.5ml *Allium cepa* respectively, and Group F treated with 1.5ml *Allium cepa*. The administration was done orogastrically and daily for four weeks.

2.4 Animal Sacrifice

Twenty-four hours after administering the last doses, animals were euthanized by cervical dislocation. The ovary and uterus were rapidly removed following an abdominal incision, homogenized at 15 000 rpm, and stored in the refrigerator at -80ºC for enzyme assay. The Ovary and Uterus are also fixed in Bouin’s fluid for histological parameters.

2.5 Histological Preparation

Each of the excised ovary and uterine tissues were used for histological staining. Fixation was done for 48 hours using 10% neutral bouin’s fluid. After fixation had taken place, the tissues were embedded using paraffin wax. Dehydration was done in ascending grades of alcohol; dehydrated tissues were cleared into two changes of xylene. The tissues were infiltrated in two changes of paraffin
wax in the oven at 37% for one hour each and finally embedded mold smeared with glycerin so that paraaffin-embedded tissues were trimmed and mounted on a wooden block at a section of 5µm thick on a rotary microtome (Leica RM 2135; Leica Instruments, Germany). The sections were spread in a warm bath and collected on a clean glass slide smeared with egg albumen. The slides were then dried on a glass drying plate at a temperature of 40°C overnight to enviable adherence and thus were stored in racks until it was ready for staining. Each sample had an average of 30 sections from which a systematic random sampling of slices was taken, and stereological and histomorphological analyses were performed.

2.6 Biochemical assay

The homogenized ovary and uterus tissue were utilized for malondialdehyde (MDA), superoxide dismutase (SOD), lactate dehydrogenase (LDH), and Catalase assay. The oxidative stress and bioenergetics markers were assessed by an enzyme-linked immunsorbet assay kit (IBL-America, Minneapolis, Minnesota, USA). Excised ovary and uterus tissues were put in Lao-style mortar containing 1ml of 0.25 Mn (5%) sucrose solutions and were homogenized thoroughly. Tissue homogenate was collected in a 5 ml plain serum bottle for enzyme assay; superoxide dismutase (SOD), Malondialdehyde (MDA), Catalase, and Lactate Dehydrogenase (LDH)

Malondialdehyde levels in tissues were measured according to the protocol outlined Stocks and Dormandy, 1971 [58] and the activity of LDH in the homogenate. The homogenates were centrifuged at 10,000×g for 10 minutes at 4°C. The clear supernatant obtained was used for the measurement of LDH activity. Superoxide dismutase activity in homogenates was determined using the method of Misra and Fridovich [59].

2.7 Statistical analysis

Data collected were analyzed using a one-way analysis of variance (ANOVA) followed by Tukey’s (HSD) multiple comparison test with the aid of GraphPad Prism v.6 (GraphPad Software, Inc., La Jolla, CA, USA). Data were presented as means ± SEM (standard error of the mean). p<0.05 was considered statistically significant

3. RESULTS

Table 1 revealed a significant increase in tissue level of MDA in animals exposed to cadmium only, group D. However, animals exposed to cadmium that were treated with Ivermectin in group C and those that were treated with Allium cepa in group F demonstrated a significant decrease in the tissue level of MDA activities. Enzymes of carbohydrate metabolism LDH increased in animals that were exposed to cadmium; groups C and D as well as the animals treated with Allium cepa only, group F. Oxidative marker enzymes; Catalase, significantly decreased in animals exposed to cadmium only, animals treated with Allium cepa only, group F, showed a decrease in catalase activities. However, groups B and ivermectin treated group) showed an increase in catalase activities relative to the animals exposed to Allium cepa.

Similarly, a significant decrease in tissue level of SOD across all groups; however, animals exposed to Allium cepa, group F, showed a significant increase relative to cadmium exposure and the control animals

Table 2 revealed a significant decrease in tissue level of MDA in cadmium induced-cadmium-induced animals treated with Allium cepa, group E and animals treated with Allium cepa only, group F as well as animals treated with Ivermectin in group C. Enzyme activities of carbohydrate metabolism LDH, increased in animals treated with ivermectin only, groups B, and animals treated with cadmium only, group D. Allium cepa administration lowered the activities of the lactate dehydrogenase in the uterine tissue. Oxidative marker enzymes, Catalase, were

Table 1: Effect of Ivermectin and Allium cepa on antioxidant enzymesin Cadmium- Induced ovarian damage

<table>
<thead>
<tr>
<th>Gr P</th>
<th>MDA (µg/m)</th>
<th>LDH (u/l)</th>
<th>SOD (u/mg)</th>
<th>Catalase (µmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.71±2.63</td>
<td>1.65±0.92</td>
<td>1.53±0.86</td>
<td>2.16±1.47</td>
</tr>
<tr>
<td>B</td>
<td>3.34±2.76</td>
<td>1.89±0.75</td>
<td>0.76±0.52</td>
<td>3.82±1.74</td>
</tr>
<tr>
<td>C</td>
<td>2.60±1.18*</td>
<td>4.07±2.89*</td>
<td>1.23±0.41*</td>
<td>4.81±5.27*</td>
</tr>
<tr>
<td>D</td>
<td>4.53±3.21*</td>
<td>2.56±1.48</td>
<td>0.92±0.30</td>
<td>1.42±0.68</td>
</tr>
<tr>
<td>E</td>
<td>2.79±1.49</td>
<td>1.64±0.83*</td>
<td>0.09±0.04</td>
<td>3.63±2.79</td>
</tr>
<tr>
<td>F</td>
<td>2.25±1.20*</td>
<td>4.12±3.84*</td>
<td>3.53±2.84*</td>
<td>0.67±0.25*</td>
</tr>
</tbody>
</table>

*Indicate significant changes, p≤0.05

significantly higher in the ivermectin-treated group, group B, and alum cepa treated group, group E, relative to the control animals. Similarly, Allium cepa treatment
Dare et al Pan African Journal of Life Sciences (2022): 6(2): 437-446

<table>
<thead>
<tr>
<th>Grp</th>
<th>MDA [µg/m]</th>
<th>LDH [µ/l]</th>
<th>SOD [µ/mg]</th>
<th>Catalase [µmol/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.89±4.10*</td>
<td>3.06±2.51</td>
<td>0.46±0.21</td>
<td>6.00±5.12</td>
</tr>
<tr>
<td>B</td>
<td>3.67±3.14*</td>
<td>6.12±5.22</td>
<td>0.61±0.11</td>
<td>9.39±8.40</td>
</tr>
<tr>
<td>C</td>
<td>2.67±2.00</td>
<td>2.06±1.70</td>
<td>0.15±0.05*</td>
<td>5.24±4.23*</td>
</tr>
<tr>
<td>D</td>
<td>2.77±1.91</td>
<td>4.09±3.65</td>
<td>0.61±0.21</td>
<td>8.71±7.65*</td>
</tr>
<tr>
<td>E</td>
<td>1.55±1.10</td>
<td>2.27±1.90</td>
<td>2.46±1.93</td>
<td>10.74±9.50*</td>
</tr>
<tr>
<td>F</td>
<td>1.52±1.02*</td>
<td>3.81±3.28</td>
<td>3.07±2.52*</td>
<td>7.36±6.22*</td>
</tr>
</tbody>
</table>

*Indicate significant changes, p≤0.05

in groups groups E and F noticed a significant increase in tissue level of SOD activities relative to the control and ivermectin treated.

3.2 Histological Observation

Histological expression, as shown in figure Figures 1 and 2 stained with H/E, revealed histo-architecture of the ovary and uterus of adult female Wistar rats in the control group and treatment groups. Group A; control control animals, group B; Ivermectin treatment and group F; Allium cepa treatment only, showed generalised histology of the ovary and uterus, no alterations in the morphological presentation of the ovaries and uterus observed; the ovarian follicles distinctly organized, in primordial follicles, secondary, tertiary/antral follicles, the Graafian follicle (GF) and the Corpus luteum along with the developing oocyte. Normal perimetrium (PE), myometrium (MY), which is characterised characterized by smooth, thick, circular muscles and the less thick longitudinal muscles, endometrium (EN), which contains the endometrial glands lined with cuboidal epithelial, connective tissue cells and matrix, lamina propria and tall columnar cells of the surface epithelium and endometrial lumen (L) expressed. Endometrium revealed no signs of vacuolation. Conversely, Cadmium treatment animals, group D, induced degenerative changes in the ovary, characterised characterized by a reduction in the number of ovarian follicles, necrotic, disorganized Graafian follicle, and degenerated granulosa and theca cells surrounding the mature oocyte in the pre-ovulatory follicle as well as degraded luteal cells. Group C, cadmium-induced treated treatment with ivermectin, showed degenerated oocyte and disorganized granulosa cells even though the developing oocyte was seen in the antral follicle. Group E, Allium cepa treated animals, appeared normal, ovarian follicles present, corpus luteum and lutein cells intact.

Animals treated with Cadmium presented a thick, dense, distorted, and degenerated endometrium and loss of cells of the columnar epithelium compared to the control animals' uterus. Ivermectin-only treated group showed necrosis in the endometrium and degeneration in the ad-luminal epithelium associated with eosinophilic debris in the lumen compared to control.

Figures 3 and 4 revealed Ivermectin-only (B) and Cadm-
um-only treated groups (C) had reduced number of ovarian follicles, suggesting fibrosis. Animals in group A, control, demonstrated follicles at the various stages of development along the ovarian cortex. Number of ovarian follicles present in Group E appeared normal. All treated groups demonstrated increased increase in collagen in the endometrial stroma and slightly between the smooth muscle fibers; though these features are not so pronounced in the control rats. *Allium cepa* treated groups showed distorted and diffused endometrium and luminal epithelium, and degeneration of cuboidal epithelium of some endometrial glands was noticed in group D. Figures 5 and 6 showed Ivermectin-only treated group was characterized by irregular-shaped follicles, Cadmium-only; cadmium-only treated group had a reduced number of ovarian follicles and a few atretic follicles. *Allium cepa*-treated groups had no significant changes in histomorphological appearance when compared to control. Flattened/squamatized epithtraumatized helium of endometrial glands in groups B, C, and D are well expressed.

Figure 3: Photomicrographs of the ovary in wistar rats across the various study groups. Masson Trichrome stain (x100). A = Control; B = Ivermectin only similar to the control group observation and well preserved theca layers; C = Ivermectin + Cadmium preserved ovarian architecture; D = Cadmium only reduced developing follicles and degenerated connective substances; E = *Allium Cepa* + Cadmium and *Allium cepa* only; Group F = demonstrated follicular development at various stages and preserved connective theca layers.

Figure 4: Representative photomicrographs of the uterine sections in Wistar rats across the various experimental groups. Masson trichrome stain (x100). A = Control; B = Ivermectin only demonstrated more endometrial glands; C = Ivermectin + Cadmium; D = Cadmium only reduced the endometrial glands and loss of the endometrial glands lining; E = *Allium Cepa* + Cadmium; F = *Allium cepa* only preserved uterine integrity.

Figure 5: Photomicrographs of the ovary in wistar rats across the various study groups. Fuelgen stain (x100). A = Control; B = Ivermectin only; C = Ivermectin + Cadmium; D = Cadmium only; E = *Allium Cepa* + Cadmium; F = *Allium cepa* only. Evidence of continuous cell division across the control, ivermectin and allium cepa treatment indicated by the development of follicles at various stages.

Figure 6: Shows the representative photomicrographs of the uterine sections in wistar rats across the various experimental groups. Fuelgen stain (x100). A = Control; B = Ivermectin only; C = Ivermectin + Cadmium; D = Cadmium only; E = *Allium Cepa* + Cadmium; F = *Allium cepa* only. Evidence of continuous cell division along the epithelia lining and along the cell lining of the endometrial glands, however, cadmium treatment showed loss of continuous cell division and reduced endometrial glands.

In figures 7 and 8, the control group presents ovarian follicles, corpus luteum, and numerous capillaries along the cortex. Cadmium-only treated group showed atretic cor-
pus luteum with vacuolation. A degeneration and reduction in cells of zona pellucida of the antral follicle was seen in group E but only a slight reduction in a number of capillaries when compared to control. There are no histopathological changes in ovarian follicles, capillaries, and corpus luteum of experimental group which received \textit{Allium cepa} treatments compared to the control group.

The cadmium-only treatment group showed a reduced number of endometrial glands and degeneration of gland epithelium, vacuolation, and increased mast cells compared to the control. However, vacuolations were also expressed in animals treated with Ivermectin and cadmium.

4. DISCUSSION

This study reported a significant decrease in the activities of ovarian and uterine antioxidant enzymes among the animals treated with a higher dosage of Cd, the result is consonant with that of Nna et al., [59] who noted cadmium treatment reduced the activities of antioxidant enzymes (LDH, SOD, and CAT), consequently promoting oxidative stress. Superoxide dismutase and catalase had been known to provide a defense line against reactive oxygen and nitrogen species consequently a potential antioxidant. Oxidative stress triggers apoptosis in the majority of germ cells within the ovary and even in ovulated oocytes [60]. Also, oxidative stress in the follicular fluid deteriorates oocyte quality and reduces reproductive outcome [61, 62]. Concurrently, combined treatment of Cd with \textit{Allium cepa} caused increased in levels of antioxidant enzymes. This is most-likely due to the antioxidant activity of \textit{Allium cepa} [63]. \textit{Allium cepa} have also been recently found to reduce MDA levels and increase SOD and CAT levels. Kumar et. al., [64] and Atakisi et al., [65] reported ivermectin induced free radicals damage and decreased antioxidant enzyme activity, and Khawla [66] reported that Ivermectin caused an increase in MDA levels and reduced antioxidant enzymes to cause oxidative stress in rabbits.

Cadmium administration in Wistar rats caused a significant decrease in the activities of Malondialdehyde, Lactate dehydrogenase, Superoxide dismutase, and Catalase in the ovary and uterus of adult Wistar rats. Cadmium had been shown to have potential endocrine disruptors, according to Hanson, [67] who reported cadmium as a developmental toxicant in the reproductive system. This study revealed ivermectin-treated animal demonstrated necrosis in the endometrial lining, coupled with degenerated luminal epithelium. Cadmium administration promotes abnormal follicular growth, cell death, follicular damage, and tumours [68-71]. These reports have been in agreement with the result obtained in this study; atretic follicles, arrest of follicular development, and degeneration of ovarian cortex were reported in this study in line with the reports of Golubnitschaja et. al., [72] and Markowska [73] that showed the combating effects of ivermectin against human cancers, including ovarian cancer. This study revealed that uterine lining Cd treated animals characterised by thick, dense, distorted, and degenerated endometrium and loss of cells of the columnar epithelium in line with previous reports [74, 75].

Histological assessment confirmed Cd’s impact in the ovarian damage, Cd induced reduction in the number of follicles, degradation of the corpus luteum, and disorganized Graafian follicles. Different treatments with ivermectin and \textit{Allium cepa} had no adverse effects on morphological representation of the ovary thus, no histo-
pathological effects were noticed, although combined treatment of rats with Cd and ivermectin did not prove entirely effective in this category as a degenerated oocyte and follicle was seen in the Cd and ivermectin treated. Conversely, co-treatment of Cd and Allium cepa showed that Allium cepa mitigated the effects of Cd on the ovary. These findings agreed with the report of Gunnarsson et. al.[76], which showed antioxidant action of zinc administration against cadmium toxicity in testicular tissue.

Cadmium treatment caused fibrosis characterized by a reduced number of ovarian follicles, degeneration, and reduction in granulosa cells of the Graafian follicle when compared to control. Changes in granulosa cells of tertiary follicle were also noticed in ivermectin and Cd treated group; this is in line with the works of Chatterjee et. al., [77], and Ferramola et. al., [78] that demonstrated apoptotic promoting effects of Cd by arresting cell cycle formation as well as the histological alteration in the myocardium. On the other hand, Allium cepa treatments had no reduction in the number of ovarian follicles and the number of ovarian follicles present in rats treated with Allium cepa and Cd appeared normal. This implies that Allium cepa was enough to mitigate the effects of Cd on the cytoarchitecture of the ovary in agreement with the stated health benefits of Allium cepa [5].

Fuelgen stain for DNA deposition in which Cd treated animals. Distorted and diffused endometrium and luminal epithelium were noticed in the ivermectin treated group, and degeneration of cuboidal epithelium of some endometrial glands was noticed. No other significant histomorphological changes were noticed in the layers and epithelial cells of all treated groups compared to control. Allium cepa and Cd treatment group showed normal cuboidal epithelium in the gland of the endometrium, however, in Cd-only treated group, reduction in the number of endometrial glands and degeneration of gland epithelium, vacuolation, and accumulation of mast cells evident. These histopathological changes were not noticed in the Allium cepa treatment groups. However, vacuolations were also expressed in the ivermectin and Cd treated group and luminar con-

gestion in the ivermectin-only treated group. Ivermectin-treated groups showed little or no significant histopathological changes when compared to control. Treatment with Allium cepa and ivermectin were both effective in attenuating the effects of Cd on the cytoarchitecture of the ovary and uterus.

In conclusion, Cd readily accumulates and spreads through tissues, including the ovary and uterus, causing hormonal disruption and ovarian damage and affecting fertility. This study counteractively explored the effects of ivermectin and Allium cepa on cadmium-induced ovarian and uterine damage. Allium cepa administration was more effective in attenuating the effects of cadmium on the uterine and ovarian morphology, much more than the anti-parasitic agent Ivermectin.

Conflict of Interest
The authors declare that there is no conflict of interest.

Authors Contributions
BJD conceived and designed the study; contributed to data analysis and wrote the paper; OOO, FOJ, OSA Collected data, performed analysis, and wrote the paper; JDA, AIB, PAD Collected data, contributed to data analysis

REFERENCES

44. Matovic V., A. Buha, Z. Bulat, and D. Dukic-Cosic, “Cadmium toxicity revisited: focus on oxidative stress induction and interactions with zinc and magnesium,” Arhiv za Higijenu Rada iToksikologiju. 2011; 62(1); 65–76.

47. Hansen, KR; Knowlton, NS; Thymer, AC; Charleston, JS; Soules, MR; Klein, NA. "A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause" Hum Reprod. 2008;23(3): 699–708.

59. Nna VU, Ujah GA, Mohamed M, Etim KB, Ibga BO, Augustine ER, Osim EE. Cadmium chloride-induced testicular toxicity in male wistar rats; prophylactic effect of quercetin pro- protect neuronal cells from oxidative stress via PKC-ε inacti-

